J an 2 00 6 THICK METRIC SPACES , RELATIVE HYPERBOLICITY , AND QUASI - ISOMETRIC RIGIDITY

نویسندگان

  • CORNELIA DRUŢU
  • LEE MOSHER
چکیده

In this paper we introduce a quasi-isometric invariant class of metric spaces which we call metrically thick. We show that any metrically thick space is not (strongly) relatively hyperbolic with respect to any non-trivial collection of subsets. Further, we show that the property of being (strongly) relatively hyperbolic with thick peripheral subgroups is a quasi-isometry invariant. We show that the class of thick groups includes mapping class groups of all surfaces (except those few that are virtually free), the outer automor-phism group of the free group on at least 3 generators, non-uniform lattices in higher rank, certain Artin groups, and others. The mapping class groups thus provide the first examples of groups that are asymptotically with cut-points, but not relatively hyperbolic—this allows us to resolve several questions about the structure of relatively hyperbolic groups. As a further application of these techniques we show that Artin groups are relatively hyperbolic if and only if they are freely decomposable. We also show that Teichmüller spaces for surfaces of sufficiently large complexity are thick, this contrasts with Brock–Farb's hyperbolicity result in low complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 12 59 2 v 4 [ m at h . G T ] 1 J ul 2 00 6 THICK METRIC SPACES , RELATIVE HYPERBOLICITY , AND QUASI - ISOMETRIC RIGIDITY

We study the geometry of nonrelatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with nonrelatively hyperbolic peripheral subgroups is a quasi-isometry invariant. ...

متن کامل

Thick metric spaces , relative hyperbolicity , and quasi - isometric rigidity

We study the geometry of non-relatively hyperbolic groups. Generalizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group being relatively hyperbolic with non-relatively hyperbolic peripheral subgroups is a quasi-isometry invariant...

متن کامل

Hyperbolizing Metric Spaces

It was proved by M. Bonk, J. Heinonen and P. Koskela that the quasihyperbolic metric hyperbolizes (in the sense of Gromov) uniform metric spaces. In this paper we introduce a new metric that hyperbolizes all locally compact noncomplete metric spaces. The metric is generic in the sense that (1) it can be defined on any metric space; (2) it preserves the quasiconformal geometry of the space; (3) ...

متن کامل

ar X iv : 0 80 1 . 20 06 v 2 [ m at h . G T ] 3 M ay 2 00 8 GEOMETRY AND RIGIDITY OF MAPPING CLASS GROUPS

We study the large scale geometry of mapping class groups MCG(S), using hyperbolicity properties of curve complexes. We show that any self quasi-isometry of MCG(S) (outside a few sporadic cases) is a bounded distance away from a left-multiplication, and as a consequence obtain quasi-isometric rigidity for MCG(S), namely that groups quasi-isometric to MCG(S) are virtually equal to it. (The latte...

متن کامل

Coarse and synthetic Weil-Petersson geometry: quasi-flats, geodesics, and relative hyperbolicity

We analyze the coarse geometry of the Weil-Petersson metric on Teichmüller space, focusing on applications to its synthetic geometry (in particular the behavior of geodesics). We settle the question of the strong relative hyperbolicity of the Weil-Petersson metric via consideration of its coarse quasi-isometric model, the pants graph. We show that in dimension 3 the pants graph is strongly rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005